Smooth hypersurface sections containing a given subscheme over a finite field

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth Hypersurface Sections Containing a given Subscheme over a Finite Field

Let Fq be a finite field of q = p elements. Let X be a smooth quasi-projective subscheme of P of dimension m ≥ 0 over Fq. N. Katz asked for a finite field analogue of the Bertini smoothness theorem, and in particular asked whether one could always find a hypersurface H in P such that H ∩X is smooth of dimension m − 1. A positive answer was proved in [Gab01] and [Poo04] independently. The latter...

متن کامل

enumerating algebras over a finite field

‎we obtain the porc formulae for the number of non-associative algebras‎ ‎of dimension 2‎, ‎3 and 4 over the finite field gf$(q)$‎. ‎we also give some‎ ‎asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$‎.

متن کامل

enumerating algebras over a finite field

‎we obtain the porc formulae for the number of non-associative algebras‎ ‎of dimension 2‎, ‎3 and 4 over the finite field gf$(q)$‎. ‎we also give some‎ ‎asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$.

متن کامل

Sequences of Consecutive Smooth Polynomials over a Finite Field

Given ε > 0, we show that there are infinitely many sequences of consecutive εn-smooth polynomials over a finite field. The number of polynomials in each sequence is approximately ln ln lnn.

متن کامل

The Lie Algebra of Smooth Sections of a T-bundle

In this article, we generalize the concept of the Lie algebra of vector fields to the set of smooth sections of a T-bundle which is by definition a canonical generalization of the concept of a tangent bundle. We define a Lie bracket multiplication on this set so that it becomes a Lie algebra. In the particular case of tangent bundles this Lie algebra coincides with the Lie algebra of vector fie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2008

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2008.v15.n2.a5